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Abstract

The paper presents recent trends in the development of prediction methods for the direct numerical simulation of multiphase

flows based on the one-fluid formalism coupled with various interface tracking algorithms. The methods are based on solving a

single set of transport equations for the whole computational domain and treating the different phases as a single fluid with variable

material properties. Changes in these properties are accounted for by advecting a phase indicator function. Interfacial exchange

terms are incorporated by adding the appropriate sources as delta functions or smoothed gradients of the composition field at or

across the interface. The strategies are first discussed within the isothermal phase context and then for situations featuring inter-

phase heat and mass transfer. Various aspects such as the treatment of capillary forces are discussed, supported by selected examples

demonstrating recent progress drawn from the current work of the authors. � 2002 Published by Elsevier Science Inc.
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1. Introduction

Multiphase flows appear in natural and industrial
processes in various forms, often featuring inter-phase
heat and mass transfer. Examples include evaporat-
ing dispersed phases in the natural environment or in
combustion chambers, condensation of steam in power
production components, erosion over wings and blades,
liquid metal sprays, transfer of soluble gases at the at-
mosphere–ocean interface, among others. At present,
there is a considerable ongoing effort directed towards
clarifying inter-phase transfer mechanisms at moving
interfaces using direct computational methods, without
use of models. This will not be possible for all types of
multiphase flows, but for the class of flow in which the
phases can be clearly distinguished from each other,
(see, for example, Fig. 1). The interest in these new
methods is dictated by the fact that earlier, well-estab-
lished averaging-based models have often not been ca-

pable of generating accurate solutions in the engineering
sense.

Solving the Navier–Stokes equations governing the
motion of multiple phases for the simulation of real
problems has proven to be complex. This explains the
relatively slow progress of this discipline as compared to
classical computational fluid dynamics applied to single-
phase flows. What makes computational multiphase
science particularly challenging is the variety of phe-
nomena in which the phases interact: Pollutant or spray
dispersion has little in common with stratified pipe-
flows, and almost none with spinodal decomposition of
a binary fluid. The way of predicting CO2 absorption by
oceans differs from the strategy for handling evaporat-
ing droplets over waves, although both phenomena are
closely related. Thus, prediction strategies have to be
tailored for specific goals and research in this field has
to be variable in its approach.

Central to the numerical simulation of multiphase
flows is the accurate identification of interface dynamics
through which flow regimes can be defined and associa-
ted inter-phase transfer mechanisms can be quantified.
In present modelling strategies phenomena taking place
at the interface separating phases are either modelled
within the framework of the interpenetrating-continua
approach, also known as the two-fluid method (see, for
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example, Ishii, 1975), or the topology and dynamics of
the interface are directly simulated by use of direct in-
terface tracking methods (ITM). In the averaged two-
fluid formalism, each point in the mixture is occupied
simultaneously (in variable proportions) by both phases,
and separate conservation equations are required for
each field. The problem here is the specification of clo-
sure laws for interfacial mass, momentum and energy
exchanges, and the corresponding interfacial area. Fur-
thermore, the evolution of the volumetric interfacial
area is predicted using an additional transport equation
(see, for example, Morel et al., 1999), in which the
mechanisms driving flow-regime transitions and relax-
ation times associated with these can be taken into ac-
count in a mechanistic way.

ITM are supposed to be applied in the opposite sce-
nario, i.e. when the identification of interfaces needs to
be precise, for example in the breakup of large bub-
bles, for droplets or liquid jets, in crystal growth, flame
propagation, or hydrodynamic instability formation
(see, for example, Fig. 1). The key to these methods is
the use of a single-phase set of conservation equations,
known as the one-fluid formulation, where the differ-
ences in material properties and surface tension are ac-
counted for by solving a convection equation for the
composition or phase indicator field. The concept is
attractive, since it offers the prospect of a more subtle
and precise strategy for the exact identification of in-
terfaces than the two-fluid formulation. Thus, in contrast
to the average model, interface tracking approaches
avoid resorting to empiricism to predict interfacial
physics driving the flow.

Compared with the interpenetrating-continua formu-
lation, the interface tracking approach can be thought of
as a direct numerical simulation (DNS) of interface
motion (not of turbulence), where no closure assump-
tions for the interfacial area evolution are needed. In the
case where the flow is turbulent, the stresses are either
modelled within the framework of the RANS approach,
or else the turbulent structures down to the Kolmogorov
scales are directly simulated by reference to conven-

tional DNS of turbulence. Combining DNS of turbu-
lence with ITM for the prediction of turbulent two-
phase flows is not practical, because the computational
costs for simulating turbulent flows increase with Rey-
nolds number, and both the accuracy and stability of
the numerics deteriorate with increasing complexity of
the interfacial topology. This super DNS of two-phase
flows is understandably limited to a narrow range of
applications, where it can only serve as a sophisticated
numerical experiment for exploring small-scale, turbu-
lence-related phenomena at the interface.

The present paper aims at addressing selected ITM
for the prediction of the class of multiphase flow where
surface tension forces are important. The focus is on the
predictive performance of these methods, on the diffi-
culties encountered when extending them to flow con-
figurations featuring strong topological changes, and on
recent variants and modifications. The work is comple-
mented by the presentation of a related method, capable
of directly predicting turbulence over a deformable in-
terface without modelling, i.e. super DNS of two-phase
flows.

2. Beyond the two-fluid formulation

The interpenetrating-continua approach is generally
employed when the exact shape of the interface is not
known, or not relevant. The main problem with this
strategy, and with all other methods based on ensemble
averaging, is the crucial need for the specification of
closure laws for interfacial exchanges. Only in certain
very simple cases, such as horizontal stratified flows
featuring slugs, smooth annular flows, waves, or spher-
ical drops and bubbles, can the shape of the interface be
easily identified and modelled. For more complex flow
regimes, including those where surface tension plays a
role, the shape and evolution of the interfaces are not
easily definable, and this explains the interest in devel-
oping ITM. First applications of these techniques focus
on the prediction of interfacial motions in relatively

Fig. 1. Examples of flows within reach of interface tracking methods.
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simple cases, such as the stability of inclusions of one
phase inside another, as in the breakup of large bubbles,
droplets, or liquid jets (Fig. 1).

2.1. The continuity equation for the one-fluid formulation

The exact, or microscopic instantaneous equa-
tions governing two-phase flow systems can formally be
written in terms of the component indicator function, or
the composition field, vkðx; tÞ, at time t and point x,
defined by vkðx; tÞ ¼ 1 for x 2 phase k, and vkðx; tÞ ¼ 0
otherwise. Since vk is a property moving with the flow,
its material derivative is obviously zero (Drew and
Passman, 1999)

Dvk

Dt
¼ ovk

ot
þ u � rvk ¼ 0: ð1Þ

This is known as the topological equation describing the
motion of a surface marked with vk, moving with ve-
locity u. Note in particular that this is a weak formu-
lation of the problem since the discontinuity of vk

(across interfaces) makes it a non-derivable function.
In the absence of heat and mass transfer, the mass

balance equation for two non-miscible, contacting pha-
ses (for example, L for liquid and G for gas) contained
within volume V as shown in Fig. 2 can be written as

vL

oqL

ot
þ vLr � ðqLuÞ ¼ 0; ð2Þ

ð1 � vLÞ
oqG

ot
þ ð1 � vLÞr � ðqGuÞ ¼ 0; ð3Þ

where qL denotes the liquid density and qG the gas
density. The above system of equations can be refor-
mulated in a more convenient form

o

ot
ðvLqLÞ þ r � ðvLqLuÞ ¼ qL

DvL

Dt
¼ 0; ð4Þ

o

ot
½ð1 � vLÞqG
 þ r � ½ð1 � vLÞqGu


¼ �qG

DvL

Dt
¼ 0: ð5Þ

Within the two-fluid formulation, Eqs. (4) and (5) are
first appropriately averaged (for example, over volume,
as shown in Fig. 2(left)). They are then solved simulta-
neously, together with the momentum and energy
equations for each phase. In the one-fluid variant,
however, the above set of equations can be combined in
a way leading to a single conservation equation but with
variable density q dictated by the interface location.
This is obtained by combining Eqs. (4) and (5)

oq
ot

þr � ðquÞ ¼ 0 with q ¼ qG þ ðqL � qGÞvL: ð6Þ

Using Eq. (1) and taking otqL and otqG to be identically
zero for incompressible fluids simplifies this equation to

ovL

ot
þ u � rvL þ q

ðqL � qGÞ
r � u ¼ 0 ð7Þ

which finally reduces to the form below

r � u ¼ 0: ð8Þ
This result is important since in certain Navier–Stokes
solvers based on the finite volume approach Eq. (8) is
generally written as r � qu ¼ 0, which obviously is not
compatible with Eq. (6).

2.2. The one-fluid formulation for flows with capillary
forces

To account for appreciable density and viscosity
jumps across an interface separating two non-miscible
phases the one-fluid method (Kataoka, 1986) presents
itself as a natural alternative. Here, both phases are
treated by a single set of conservation laws for the entire
flow field, but the differences in the material properties
of the phases and capillary forces (when appropriate)
are explicitly accounted for. In this case the local bal-
ance equations for incompressible, Newtonian fluids are
written as

r � u ¼ 0; ð9Þ

oqu
ot

þr � ðquuÞ ¼ �rp þr � s þ qgþ cr � U; ð10Þ

oqE
ot

þr � ðqEuÞ ¼ r � ðkrT Þ þ ð� pI þ s þ cUÞ : ru;

ð11Þ
where g stands for the acceleration of gravity, p for the
pressure, E for the internal energy, T for the tempera-
ture, k for the heat conductivity, s ¼ l ruþruTð Þ de-
notes the viscous stress tensor, with l representing the
dynamic viscosity, and U is the capillary stress, with c
being the coefficient controlling the strength of the
capillary forces. In these equations, material properties
such as the density depend locally on the phase indica-
tor function vk determined by use of the topological
Eq. (1)

Fig. 2. Examples of integration volumes used for describing multiphase

flow systems.
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gðv; tÞ ¼ gG þ gLð � gGÞvL: ð12Þ

Note that this is not true for the viscosity for which the
above relation can only be utilized as a model.

The capillary tensor U represents the energy con-
centrated at a diffuse interface because of the prevailing
density or composition field gradient rv (Anderson
et al., 1998). It reflects the rate of change of the fluid’s
free energy density n with respect to the composition
field v, i.e. U ¼ dn=dv. The conditions under which this
generalized form of capillary tensor can be reduced to
the conventional and simplified surface tension model
are discussed below.

The capillary tensor (in fact, the free energy density)
is a function not only of the thermodynamic properties
such as the density, but also of their gradients. As de-
fined by Anderson et al. (1998), Nadiga and Zaleski
(1996), Chella and Vinals (1996), this tensor has the
form

U ¼ vr2v

�
þ 1

2
jrvj2

�
I �rv �rv ð13Þ

with I denoting the identity matrix and � a tensor
product. Moreover, it can be shown that

r � U ¼ vr r2v
� �

: ð14Þ
This particular form of the capillary tensor is derived
from the simplest model of free energy density n due to
van der Waals (1893). Jacqmin (1999) employs yet a
slightly different form for n and thus for U, in which
relation (13) appears as a particular case under hy-
pothesized conditions. Methods using the form of cap-
illary forcing given by Eq. (13) combined with the
Navier–Stokes equations are known as diffuse-interface
models (Anderson et al., 1998; Jacqmin, 1999). A de-
tailed description of the system of equations governing
the motion of binary viscous fluids is given by Lowen-
grub and Truskinovsky (1998), who referred to it as the
Navier–Stokes-Cahn–Hilliard (NSCH) model. They
have been widely employed in applications where cap-
illary forces were particularly dominant, e.g. in spinodal
decomposition by Anderson et al. (1998), Jacqmin
(1999), and Verschueren et al. (2001).

Chella and Vinals (1996) demonstrated that in the
limit of smoothly curved, thin interfaces, and when the
interface motion is slow compared with the local relax-
ation time of v, the capillary source term appearing in
Eqs. (10) and (11) can be approximated by

cr � U 
 �jrvj2Kjn; ð15Þ

where n denotes the unit vector normal to the interface,
K is a positive constant, and j represents the local cur-
vature defined by

j ¼ �r � n ¼ �r � rv
jrvj

� �
: ð16Þ

Integrating Eq. (15) over the interfacial area (ds) yields
the continuous surface force (CSF) model of Brackbill
et al. (1992)Z

rjdðx� xfÞnds; ð17Þ

where r is the surface tension, assumed to be constant
across the entire thickness of the interfacial sublayer,
and dðx� xfÞ represents a Dirac pulse with xf being the
instantaneous location of the interface. The delta func-
tion appears in the above expression because use was
made of

rv ¼
Z

dðx� xfÞnds: ð18Þ

The surface tension r reflects the excess of capillary
energy concentrated at the interface per unit surface
area caused by the variation in v across the interfacial
sublayer.

In order to avoid having to deal explicitly with the
curvature, a further manipulation of Eq. (13) led La-
faurie et al. (1994) and Scardovelli and Zaleski (1999) to
the following anisotropic variant of the CSF-based
capillary forcing:Z

rjdðx� xfÞnds � rr � rvj jI
�

�rv �rv
rvj j

�
ð19Þ

also known as the continuous surface stress (CSS) model.
Both CSF and CSS are in principle simple, robust and
require only the phase field v to be determined. How-
ever, both are also known to induce spurious currents
near the interface, because once discretized, the exact
momentum jump condition at the interface is not always
properly preserved, i.e. pressure and viscous stress forces
do not balance the capillary forces. This is partly due to
the lack of precision in solving the curvature, but it also
results from the way the surface term is discretized in the
momentum equations. But even so, the CSF model and
its variants have been attractive to various researchers
(Kothe and Mjolsness, 1992; Kothe et al., 1996; Rich-
ards et al., 1995; Rider et al., 1995) essentially because of
their simplicity of implementation. The composition
field in diffuse-interface models is employed as a mass
concentration field with its proper thermodynamic law
for chemical diffusion. It therefore requires either pre-
defined (known) thermodynamics for the composition
field (or density), or the topological equation for the
composition field 1 involves a fourth-order derivative of
vk accounting for the thermodynamics for chemical
diffusion in question. The model has not yet been

1 In applying their second-gradient theory for the Stefan problem,

which is a sort of diffuse-interface model, Jamet et al. (2001) employed

the exact, one-dimensional solution for the density profile across a

plane liquid–vapour interface. Therefore, they did not solve for the

topological Eq. (1).
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compared to CSF and CSS in terms of generation of
spurious currents.

2.3. Performance and impact of CSF-based models

To alleviate some of the drawbacks associated with
the CSF approach, Meier et al. (2002) developed a new
technique for determining the curvature j and for in-
cluding the surface-tension source term in a way that
keeps spurious currents low (referred to as CSF-M). In
their approach, the curvature is determined more accu-
rately by means of an estimator function fitted with a
least-squares-fit against reference data, and the surface
tension force is discretized so as to considerably reduce
parasitic currents. The method was found to minimize
these currents when employed together with a speci-
fic algorithm for interface reconstruction as discussed
within the context of Fig. 3.

The benchmark problem considered refers to the
distribution of surface tension around a circular droplet,
where curvature is nominally known and constant. A
spectrum of 25 droplets with variable diameters Dþ

(normalized by Dx) was specified. Fig. 3 compares the
results of this new method, CSF-M, with those obtained
using CSF and CSS, Eqs. (17) and (19), respectively. The
resulting standard deviations of j and the mean velocity
estimates over the entire domain are shown in Fig. 3(a).
This reveals a high level of noise in the curvature esti-
mates obtained using CSF, whereas Meier’s et al. CSF-
M approach achieved about three to seven times better
agreement of the mean curvature with the reference
value, and an approximately four to seven times lower
standard deviation. Moreover, in comparison with the
other two methods the CSF-M approach reduces by two
to three orders of magnitude the spurious currents re-
flected by the artificial mean velocity around the bubble
(Fig. 3(b)).

As validation exercises Meier et al. (2002) performed
a number of tests with use of their modified CSF-M
method, including rising bubbles in the six different re-
gimes identified by Clift et al. (1978), and breakup of a
liquid jet (more details can be found in Meier, 1999). In
these, different bubble shapes can be distinguished as a
function of the E€ootv€oos and Morton numbers, defined
respectively by Eo ¼ gDqD2=r and M ¼ gl4Dq=q2r3,
with D being the diameter of a sphere of equal volume.
Fig. 4 shows computation results of Meier et al. (2002)
obtained with CSF-M. In that simulation, an axisym-
metric grid containing 35 � 175 cells was employed.
Comparison with the experimental map regime pro-
posed by Clift et al. (1978) shows a remarkable agree-
ment in the shape of bubbles. With use of the CSF
model, however, the bubbles were found to experience
non-physical fragmentation. Apart from this, certain
quantitative measures (aspect ratio for case 3, wake
angle in case 6) were found to compare reasonably well
with the data.

3. Interface tracking methods: classification

The most frequently employed Eulerian-based 2 ITM
for predicting certain classes of multiphase flows are the
volume of fluid (VOF) method (Hirt and Nichols, 1981;
Kothe and Mjolsness, 1992; Kothe et al., 1996; Richards
et al., 1995; Rider et al., 1995; Rider and Kothe, 1998),
the front tracking (FT) or immersed boundary method
(Juric and Tryggvason, 1998; Unverdi and Tryggvason,
1992), the level set (LS) methods (Fedkiw et al., 1999;
Osher and Sethian, 1988; Osher and Fedkiw, 2001;

Fig. 3. (a) Standard deviations of the normalized curvature estimates j vs. normalized diameter Dþ ¼ D=Dx obtained using Meier’s et al. method

(labelled CSF-M), for various smoothing matrices, 1 � 1, 3 � 3 and 5 � 5; (b) normalized mean (induced by parasitic currents) velocity U
þ

in the

entire domain vs. Dþ.

2 This means that the grid is always fixed independently of the way

the interface is identified. This distinguishes from Lagrangian methods

in which the grid moves with the interface.
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Sussman and Smereka, 1997), and the phase field
(PF) methods (Anderson et al., 1998; Jacqmin, 1999;
Lowengrub and Truskinovsky, 1998). The boundary
fitting method (De Angelis, 1998; Fulgosi et al., 2001) is
not of practical use; it can be better employed as a DNS
for idealized flows. What is important to note is that in
these methods the location of the interface is obtained
by inspecting the phase indicator function vðx; tÞ, which
has a particular physical meaning in each approach. The
FT approach differs from the others because it employs
discrete (marker) points to localize the interface rather
than continuous functions. This method is not treated in
the present work. In a further classification the interface
sublayer separating the phases is predicted by the use of
VOF as being massless and of zero thickness. The other
methods assume, however, diffuse interfaces, a property
shared by all FT schemes.

4. The volume of fluid method

4.1. Basic formalism

The VOF approach relies on the definition of the
liquid volume-fraction field or the volumetric proportion
occupied by one of the phases within volume V (Fig.
2(right)). This fluid property is conventionally denoted
(in a discrete from) by Fij and defined by

Fij ¼
1

V

Z
V

vðx; tÞdV ; ð20Þ

where in this context V is the cell volume. In the VOF
context, Eq. (1), therefore, represents the evolution of
the liquid volume-fraction, identifying flow regions con-

taining pure liquid (where Fij ¼ 1) from pure gas flow
regions (where Fij ¼ 0). Interfacial cells are such that
0 < Fij < 1. The VOF method does not amount solely
to the solution of Eq. (1); it requires accurate algo-
rithms for advecting the volume fraction function so
as to preserve conservation of mass. Since this cannot
be achieved by means of conventional finite-difference
schemes because of numerical diffusion, the composition
field is first advected, after which the interface location is
reconstructed to avoid numerical smearing of the in-
terface. Briefly, updated interface information (after a
convection step of Eq. (1)) is discarded in favor of the
discrete volume fraction Fij. The interface geometry is
instead inferred, and its location is reconstructed from
local volume fraction data using an appropriate algo-
rithm. Once this type of algorithm is applied for ad-
vecting the volume fraction, the mass is systematically
conserved even if the interface remains sharp. The re-
constructed interface is then used to determine weighted
cell material properties according to Eq. (12), for ex-
ample. The disadvantage of having sharp inter-phase
transitions in the volume fraction field is that the cur-
vature j can be highly oscillatory even for perfectly
round surfaces. This could probably be avoided if
curved interface reconstructions were used instead of
line-segment reconstructions.

Earlier reconstruction schemes, usually called simple
line interface construction (SLIC), used only vertical or
horizontal lines in each cell to reconstruct interfaces
(Noh and Woodward, 1976). More recently, recon-
structions such as the piecewise linear interface con-
struction (PLIC) method, employ straight, oblique lines
in each cell (Rider et al., 1995; Rider and Kothe, 1998).
This has several advantages: Fluid properties can be

Fig. 4. Rising bubbles in different regimes. Data taken from Meier (1999) and Meier et al. (2002).
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allocated more accurately, and so can the interface area,
enabling a more realistic implementation of surface
tension and interfacial transfer models. In the meantime,
new reconstruction algorithms have appeared recently
using splines and quadratics.

4.2. Illustrative examples

4.2.1. Collapsing cylinder of water
Interface tracking-based incompressible flow solvers

can be very well tested with dam-break problems. A
volume of liquid kept back behind a dam is released by
suddenly removing this barrier. In most experiments
reported in the literature, a geometry suitable for two-
dimensional, Cartesian simulations is used. Munz and
Maschek (1992) instead performed an experiment with
cylindrical symmetry, which makes it particularly useful
for validating axisymmetric codes.

In the experiment, a cylindrical column of water of
diameter 110 mm and height 200 mm was released by
suddenly lifting the tube which had kept back the water.
The water spread radially on the flat bottom to the side
wall of the pot, where it sloshed upwards, fell back and
collapsed back to the centre where a jet shot up. Up to
this secondary collapse, the flow was fairly axisymmet-
ric, smooth and laminar, thus, prediction with an axi-
symmetric, laminar flow simulation should be possible.
However, during the secondary collapse, with growing
asymmetries, this sort of idealization is bound to fail.
The test case was simulated with the PLIC–VOF
method by Meier (1999), using 50 � 80, 100 � 160 and
150 � 240 cells, respectively. Surface tension was ne-
glected since it should be of importance only during and
after the secondary collapse. Resulting interface shapes
corresponding to the movie images are shown in Fig. 5.
The main features of the flow are shown to be well
simulated, including collapse, radial spreading, sloshing
on the side wall and secondary collapse. The formation
of a ‘‘crown’’ on the top and the main interface shape
at t ¼ 0:08 and 0:2 s is also well reproduced. The col-
lapse of the crown leads to a thin central upward jet at
t ¼ 0:38 s; this is again a (minor) overprediction due
to the flow symmetry imposed in the simulation. At
t ¼ 0:52 and 0:7 s, where the flow loses its spatial sym-
metry, the main shapes are still reasonably well repro-
duced. The characteristic times, heights and run-out
lengths were also well reproduced (see, Meier, 1999).
But because the simulation imposes symmetry on
the flow, the predicted central sloshing heights were
overestimated.

4.2.2. Downward injection in a water pool
In the containments of boiling water reactors (BWRs)

large bubbles may be formed at the exit of vertical,
downwards-pointing vents injecting air and mixtures of
steam and non-condensibles into a containment water

pool. Meier (1999) carried out a series of experiments to
observe the behaviour and condensation of such bubbles
in downward and upward injections (see, also, Meier
et al., 2000 for more details about the experimental set-up).
A sensitivity study had previously been carried out fo-
cusing on the effect of the feed-pipe length-to-diameter
ratio, the injection orientation, the volumetric flow-rate,
and the feed-pipe inflow conditions (constant velocity
against oscillating velocity). The experiments yielded
valuable data and recordings, which were later (Meier
et al., 2002) used to validate the PLIC–VOF variant
combined with the modified surface tension model CSF-
M introduced in Section 2.3 applied to the problem of
gas injection. A qualitative comparison between mea-
sured and predicted flow referring to isothermal condi-
tions (injection of pure air) is shown in Fig. 6. The
simulation was also two-dimensional and axisymmetric,
with imposed unsteady flow conditions at the pipe
nozzle and imposed hydrostatic pressure from the far
field. The injection velocity was not constant because the
flow was oscillating with an imposed frequency in the
pipe.

Fig. 5. Movie images of the collapsing cylinder of water from Munz

and Maschek (1992), and the corresponding, reconstructed interfaces

of PLIC–VOF simulations of Meier (1999). Results of various grid

resolutions at different time steps.
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The figure indicates that the model reproduces rea-
sonably well bubble formation, detachment, upward
motion, and fragmentation, at least in the early stage of
injection during which the flow is still spatially sym-
metric. Even when the video images shown in Fig. 6
were carefully selected, the axisymmetry of the flow is
lost before the bubbles start to rise up away from the
nozzle. Frames 1–4 from the upper panel (predictions,
upper panel) show the growth of the bubble, frames 6
and 7 are shortly before and after detachment, and
frames 8–12 show the breakup of the bubble into many
small bubbles. After the detachment of the previous
bubble, a new bubble may follow immediately, or the
gas may withdraw into the nozzle for a moment and
then push out a new bubble. This water intrusion is one
of the clues for pressure and velocity oscillations inside
the downcomer exit. Note finally that the frequency of
the bubbles was also reasonably well predicted in
agreement with the data. A summary of the predictions
and comparisons can be found in Meier et al. (2000).

5. Level set methods

5.1. Basic formalism

The LS approach (Osher and Sethian, 1988) consists
of solving Eq. (1) in a conventional way, while intro-
ducing a subtle way for localizing the interface on the
grid. The formulation is based on the construction of a
smooth function /ðx; tÞ, defined everywhere in the
computational domain X, referring to the shortest dis-
tance to the front. Negative values correspond to one of
the fluids and positive values to the other. The exact
location of the interface CðtÞ corresponds to the zero
level of /. When expressed in terms of the composition
field v, the LS function is such that vk ¼ Hð/Þ, where
Hð/Þ is the Heaviside function defined by

Hð/Þ ¼ 1 if / > 0;
0 if / < 0:

�
ð21Þ

This implies that /ij is directly linked to the liquid vol-
ume fraction field Fij through

Fij ¼
1

V

Z
V
H /ij

� �
dV : ð22Þ

Again, the LS function /ðx; tÞ is governed by the to-
pological Eq. (1). The advantage of using this form of
interface tracking first is that it dispenses with interface
reconstruction employed in VOF, which are computa-
tionally very expensive and difficult (if not impossible) to
implement in non-Cartesian configurations. LSs can
easily be extended to three dimensions and unstructured
meshes. Both methods can handle merging and frag-
mentation, and permit identification of the exact loca-
tion of the interface. The disadvantages are interface
smearing and non-conservation of mass. In contrast to
LSs using an artificial level set function, diffuse-interface
models do conserve mass but only when the composition
field is defined as a concentration. These will be dis-
cussed next.

5.2. Interface thickness relaxation

The LS method is supposed to tackle multiphase flow
problems of all sorts, including those involving large
ratios of material properties, e.g. qL=qG > 100. Sharp
variations in density across the interface can be partic-
ularly devastating for numerical solvers based on the
solution of Poisson equation for the pressure (Fedkiw
et al., 1999). In order to relax interfacial changes the
interface sublayer is artificially thickened by smoothing
some of the physical properties of the fluids, primarily
the density, and, when appropriate, the quantities en-
tering into the equations of state, such as the coefficients
of thermal expansion and specific heat for the liquid
phase.

Fig. 6. Bubble formation following injection of air through the

downcomer vent. High-speed video images against PLIC–VOF com-

putations (Meier et al., 2000; Meier, 1999). Flow rate of _VV ¼ 4 l/s

(comp.) and _VV ¼ 10 l/s (exp.).
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For that purpose a modified Heaviside function de-
noted by Hð/Þ is employed to smooth the physical
properties across an interface thickness of 2d, where d is
typically covered by 1 to 2 cells on each side of the in-
terface (Sussman and Smereka, 1997)

gð/; tÞ ¼ gG þ gLð � gGÞHð/Þ; ð23Þ
where

Hð/Þ ¼
0 if / < �d;
1 þ /

d þ 1
p sin p/

d

� �
if j/j6 d;

1 if / > d:

8<
: ð24Þ

The same modified Heaviside function is concurrently
employed to determine the surface tension which, in this
context, can also be cast into the form of a volumetric
force by reference to the CSF model (17)

rjð/ÞrHð/Þ: ð25Þ
To avoid possible instabilities faced when use is made

of pressure-correction schemes, Fedkiw et al. (1999)
proposed the ghost-fluid method, in which the jumps in
density and stress at the interface are smoothed in a
particular way. Other authors suggest the use of pro-
jection methods or two-step fractional time spliting
methods rather than pressure correction schemes. In
these algorithms the velocity is first determined from the
momentum equations without pressure gradient, then
corrected using the Poisson equation for the pressure.

5.3. Interface smearing

As numerical errors often cause the contours of the
LS field to deform as the phase moves, a redistancing
algorithm is required to regularize the function. This is
an inherent disadvantage of the LS approach as com-
pared to other methods. In other words, advecting the
initial distance function /ðx; 0Þ will not be maintained as
such when use is made of Eq. (1) advecting the phase
field. An extra redistancing algorithm preserving
jr/j ¼ 1 around the zero level of / is therefore required
(Sussman et al., 1999).

This task constitutes the largest programming effort
of the LS methods. The scheme of Sussman et al. (1999)
scheme is the one employed most often. It consists of
advecting an intermediate equation for a correction field
dðx; tÞ during a period of intermediate time ~tt

od
o~tt

� sgnð/Þ 1ð � jrdjÞ ¼ 0; dðx; 0Þ ¼ /ðx; tÞ ð26Þ

with sgnð/Þ ¼ 2HðxÞ � 1 denoting the signum function.
The equation is iterated until d becomes a distance
function, i.e. until jrdj ¼ 1. The corrected /-field is then
obtained by setting /ðx; tÞ ¼ dðx; eÞ, where e is the time
elapsed for Eq. (26) to reach convergence. Osher and
Fedkiw (2001) report on recent extensions and other
related fast methods.

Originally, the algorithm proposed by Sussman et al.
(1999) was based on a second order, non-oscillatory
ENO scheme for discretizing the convective flux and a
second-order Runge–Kutta time marching scheme. A
more robust alternative was found by the authors’ group
by resorting to simpler, first order forward Euler
schemes (Meier and Lakehal, 2000). Apart from this, the
optimum near-wall treatment to be employed in con-
nection with Eq. (26) was found to consist in extrapo-
lating d and its second derivatives o2d=on2 at the
boundaries.

Some difficulties may, however, be encountered in
stabilizing the solution near the boundaries. This can
systematically be alleviated by imposing the following
criterion:

if sgnðdðx; eÞÞ 6¼ sgnð/ðxÞÞ then dðx; eÞ ¼ 0; ð27Þ
acting like an ‘‘overheat protection’’ while not affecting
the final result.

Fig. 7 shows an example of phase field redistancing
applied to the dam-break problem calculated in two
dimensions. The left panel clearly shows a typical sce-
nario of the /-isocontours being smeared around the
zero level. Iterating Eq. (26) for 10 time steps provides a
perfectly redistanced phase field around / ¼ 0, as shown
in the neighbouring panel.

5.4. Mass conservation

The main weakness of the LS methods is that they do
not assure mass conservation as a result of employing
Eq. (24). In this respect, a simple approach referred to as
the global-volume correction technique has recently been
proposed by the authors’ group (Meier and Lakehal,
2000), which can be summarized as follows: at (an ar-
tificial) time ~tt, the volume V ðx;~ttÞ covered by liquid is
determined. Then, after each redistancing of / at ~tt þ D~tt
a correction, /e, corresponding to the error in volume
Veðx;~tt þ D~ttÞ is added overall to the computed /c field
such that the liquid volume V ðx;~tt þ D~ttÞ is forced to be
equal to V ðx;~ttÞ. In two dimensions, the relation for the
error in mass estimated over the entire computational
domain Xij is given by

Veð~tt þ D~ttÞ ¼ 1

L

X
i;j

Z
Xij

jHð/eðtÞÞ � Hð/cðtÞÞjdx; ð28Þ

where /eðtÞ is the exact solution of the LS function and
/cðtÞ is the computed one. The perimeter of the interface
is denoted by L; in three dimensions it would represent
the area covered by the thickness of the interface, d. The
correction can be applied repeatedly, with / converging
in less than five subiterations. This method was found to
provide global volume conservation for large-scale in-
terfacial structures such as the example shown in Fig. 7.
It may, however, lead to non-physical behaviour in sit-
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uations with small-scale dispersed phases, as in the ex-
amples shown in Fig. 1(c).

5.5. Illustrative examples

5.5.1. Rising bubble in a quiescent fluid
The first example simulated by use of LSs is the three-

dimensional bubble rising in a quiescent incompressible
fluid. The density ratio is of 1000, the viscosity ratio is of
100, and the surface tension coefficient is equal to

r ¼ 0:07 N/m. The CSF model is employed under the
form given by Eq. (25). Fig. 8 shows contours of the
signum function sgnð/Þ applied to the LSs around the
bubble. It illustrates the early motion of the bubble at
two instants, before the bubble experiences major to-
pology changes.

5.5.2. Gravity driven currents (the lock flow)
Gravity driven currents are induced by density vari-

ations due to a difference in temperature, such as
atmospheric fronts, or due to the presence of a heavier
dispersed phase. These are simple flow configura-
tions, which may, however, result in very complex flows
characterized by physical processes such as the emer-
gence of Kelvin–Helmholtz-like instabilities, the for-
mation of lobes and clefts at the front leading edge, etc.
This class of flow has only recently been treated by using
the one-fluid formulation. Gr€oobelbauer (1995), for in-
stance, coupled it with the VOF scheme and reported
reasonable results only for small to moderate density
ratios, up to qL=qG 
 20. Below, we report recent results
obtained with LS for the lock flow, 3 where attention
was focused on the run-out length and final deposition.

Fig. 9 shows the interface evolution in the lock
problem for qL=qG ¼ 1:38, where the front intrusions
are clearly reproduced. The predicted run-out lengths of
the dense and light gas are discussed in the context of
Fig. 10, where Gr€oobelbauer’s (1995) VOF results are
included for comparison. For almost all gas combina-
tions, the two strategies deliver comparable results. For
the gas combination CO2/argon (qL=qG ¼ 1:11) both
fronts have nearly equal velocities, in line with Yih’s
(1965) analytical theory for Boussinesq fronts. For
density ratios higher than two (e.g. R22/argon), the
dense-gas fronts travel appreciably faster than the fronts
of the light gas.

6. The boundary fitting method

6.1. Introductory remarks

As mentioned in the Introduction, combining DNS of
turbulence with interface tracking algorithms for pre-
dicting turbulent, multiphase flows can only serve as a
sophisticated numerical experiment for exploring small-
scale phenomena down to the interface. While rigorous
DNS of turbulence is generally performed by use of
spectral methods (and at low Reynolds numbers only),
ITM discussed previously are not precise enough for
that task. For this reason another route is required,
preferably in the context of the same spectral-based
approach.

Fig. 7. Example of a LS field in two dimensions, before and after re-

initialization (Meier and Lakehal, 2000). The region of correct d

propagates, starting from the zero level. At ~tt ¼ 10D~tt, the correct region

is about 2 � 10 cells wide.

3 The lock flow consists of two fluids initially separated by a gate.

Mutual intrusion develops after the gate is withdrawn.
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Prior to further detailing the method it is perhaps
useful to outline the context in which there exists a po-
tential interest for this type of simulation. To summa-
rize, what is not yet fully solved in the direct simulation
of multiphase flows is the way ITM can be coupled with
turbulence models. For a turbulent flow involving two
immiscible, contacting phases the methods may lead to
situations where the interface is perceived like a solid
surface to one of the phases, a conjecture to which the
employed turbulence model needs to conform. The sit-
uation can actually be compared to a wall flow where
turbulence evolves in a particular way, so that a near-
interface low-Re turbulence model is necessary. Such a
model can be developed by exploiting DNS data of

idealized two-phase flows where both turbulence and
interface dynamics are free from approximations. This
will obviously remain approximative, since high-Re
number DNS is presently out of reach of available
computational resources.

6.2. Description of the method

In the boundary fitting method (De Angelis, 1998;
Fulgosi et al., 2001), the Navier–Strokes equations with

Fig. 8. Flow and interface evolution around a three-dimensional bubble rising in a quiescent fluid for a density ratio of qL=qG 
 1000.

Fig. 10. Front propagation velocities: (a) light gas and (b) dense gas.

Fig. 9. Interface evolution in the lock flow.

252 D. Lakehal et al. / Int. J. Heat and Fluid Flow 23 (2002) 242–257



(constant) material properties defining the fluids present
in the system are first solved separately in each subdo-
main. Subsequently they are coupled explicitly through
continuity of velocity and stress jump conditions at the
interface. In the absence of heat and mass transfer these
jump conditions can be expressed as

ððsL � sGÞ � nÞ � nþ pG � pL þ rjr � n
þ ðqL � qGÞgf ¼ 0;

ððsL � sGÞ � nÞ � ti ¼ 0; i ¼ 1; 2;

uG ¼ uL;

ð29Þ

where t1 and t2 denote the two tangential unit vectors at
the interface. The interface location has to be identified
instantaneously so as to directly impose the jump con-
ditions at the interface. This can be accomplished by
transforming Eq. (1) into an equation advecting the
vertical elevation of the interface, denoted by f ðx; tÞ
around its zero level. In the particular context where the
governing equations (including Eq. (1)) are solved using
a pseudo-spectral technique the method offers the
prospect of a more rigorous strategy than VOF or LS.
However, since the equation for interface elevation
cannot be extended to strong topological changes, the
method remains confined to simple two-phase flow
configurations where the topology of the interface is
easily definable, like in stratified flows.

6.3. Illustrative example

The example reported here consists of the counter-
current air/liquid turbulent shear layer with a de-
formable interface (see Fulgosi et al., 2001). The grid
resolution of each phase was 643. The continuity and
momentum equations were solved separately in each
subdomain, together with Eq. (1) for interface elevation.
A pseudo-spectral method was employed. The Reynolds
number defined using the effective shear velocity and the
half depth of the domain was 85.5 in both phases.

Since Eq. (1) was solved in the gravity direction
only, the method cannot treat strong topological chan-
ges such as wave breaking. Thus, parameters reflecting
the intensity of surface tension and gravity forces, i.e.
the Weber and Froude numbers, were carefully selected
so as to limit the elevation amplitude and steepness to
the range of capillary waves. Fig. 11 illustrates the topo-
logy of the interface at a given time step. Occasionally,
flow recirculation between successive crests on the gas
side were observed. The major effect expected from in-
terface deformation in the presence of shear is the extra
transverse motion superimposed on the mean flow in the
direction normal to the interface. Fulgosi et al. (2001)

Fig. 11. The topology of the interface separating a counter-current air–

water flow.

Fig. 12. (a) Profile of the mean streamwise velocity. Lines and symbols

are used to identify FDI and OCH, respectively. (b) RMS profiles of

the three velocity components. (––) and (�), streamwise velocity;

(– – –) and (�), spanwise component; (– � – � –) and (M), normal com-

ponent.
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analyzed this behaviour in detail by comparing their
results with available open channel (OCH) flow data.

The way the lighter phase behaves at the interface was
examined by looking at the velocity profiles and turbu-
lence structure. Fig. 12 shows the profiles of the mean
streamwise velocity for the flow over the deformable
interface (FDI) and for the OCH. The velocity profiles
are virtually the same except that the origin in the FDI
case does not start from zero because of the applied
boundary conditions. Fig. 12 shows the RMS profiles of
the velocity fluctuations. The behaviour is quasi-identi-
cal but again, because of different boundary conditions,
the RMS values of u and v in the FDI case do not
originate at the same location. The strong similarity in
the fluctuating velocities confirms the fact that the gas
phase perceives the interface almost like a solid wall.
This exercise has the merit of demonstrating the neces-
sity of adapting turbulence models at the interface when
employed in connection with direct interface tracking
schemes.

7. Inter-phase heat and mass transfer

Mass transfer between gaseous and liquid phases
occurs under various conditions. The absorption of
slightly soluble gases across an interfacial sublayer dif-
fers substantially from strong interfacial mass-suction
due to condensation or vaporization. Such phenomena
are present in a certain class of nuclear engineering ap-
plications like the venting of mixtures of steam and non-
condensible gases in containment water pools (see, for
example, Fig. 6).

The numerical simulation of interfacial phase change
is facing difficulties inherent to the physics of the
problem itself. For example, for Prandtl and Schmidt
numbers typical of nuclear engineering applications
the thickness of regions over which concentration and
temperature gradients are significant is only a fraction of
a millimeter. Since the rate of mass transfer due to
condensation depends on the gradients of mass con-
centration and temperature across the interface, its de-
termination requires an accurate resolution at the
interface. This is obviously not plausible in practical
situations. Future research must thus rely on experi-
mental correlations for these transfer mechanisms, or on
DNS data, at least for low-to-medium mass fluxes.

Liquid–vapour phase change effects have been re-
solved within the one-fluid formulation by different re-
searchers: Beux et al. (1998) and Son et al. (1999) used
the the LS method, Juric and Tryggvason (1998)
employed their FT approach, and Jamet et al. (2001)
applied the so-called second gradient theory or the
Cahn–Hilliard equations.

In principle, incorporating heat exchange within the
one-fluid formulation requires the use of mass and en-

ergy jump conditions (Carey, 1992) at the interface de-
fined by

_mm ¼ qLðuL � VfÞ � n ¼ qGðuG � VfÞ � n ð30Þ
and

_mmHLG þ _qq ¼ 0; _qq ¼ qGð � qLÞ � n ð31Þ
where _mm is the inter-phase mass flux, HLG is the latent
heat of vaporization, _qq is the rate of heat release at the
interface, and Vf is the speed of the front (Fig. 13).

In this instance the mass conservation Eqs. (4) and (5)
take the form

o

ot
ðvLqLÞ þ r � ðvLqLuÞ ¼ qLðu� VfÞ � rvL; ð32Þ

o

ot
½ð1 � vLÞqG
 þ r � ½ð1 � vLÞqGuÞ

¼ �qGðu� VfÞ � rvL: ð33Þ

Summing up these relations and considering the in-
compressibility of each phase leads to

ðqL � qGÞ
DvL

Dt
þ qr � u ¼ ðqL � qGÞ uð � VfÞ � rvL:

ð34Þ
The above equation can again be split into a pure mass
conservation equation, r � u ¼ 0, and a complementary
counterpart represented by the topological equation

ovL

ot
þ u � rvL ¼ uð � VfÞ � rvL ð35Þ

in which inter-phase mass transfer is reflected by the
presence of the source term.

In a typical application of VOF, where v represents
the VOF Fij, Eq. (35) can be rewritten as

oF
ot

þ u � rF ¼ 1

q

Z
_mmdðx� xfÞds; ð36Þ

where we have used the expression for the jump in mass,
Eq. (30), and that of rv given by Eq. (18). Next, using
the expression for the heat release _mm ¼ _qq=HLG reduces
Eq. (36) to

oF
ot

þ u � rF ¼ 1

qHLG

Z
qGð � qLÞ � ndðx� xfÞds; ð37Þ

where the jump in energy qG � qL can be determined by
solving the temperature gradients on both sides of the
interface, e.g. qG ¼ �kGrT jG.

In the LS method, where v is expressed in terms of the
distance to the interface /ij, Eq. (35) can be shown to
take the form

o/
ot

þ u � r/ ¼ _mm
q
jr/j; ð38Þ

where, again, use was made of Eq. (30) together with the
expression for the normal unit vector n ¼ r/=jr/j.
Inferring next the mass flux _mm from Eq. (31) results in
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o/
ot

þ u � r/ ¼ 1

qHLG

qGð � qLÞ � r/; ð39Þ

which, by use of the modified Heaviside function sim-
plifies to

o/
ot

þ u � r/ ¼ dð/Þ
qHLG

qGð � qLÞ � rHð/Þ: ð40Þ

This method was already tested and found to perform
reasonably well for low mass fluxes, for example for
bubble collapse in a subcooled liquid (Beux et al., 1998),
and for nucleate boiling on a horizontal surface (Son
et al., 1999). The advantage in this context is that the
temperature gradients appearing in Eq. (40) are explic-
itly expressed in terms of the distance to the interface /.
However, the inability of LSs to conserve mass may
affect the results.

Within the FT framework, Juric and Tryggvason
(1998) proposed solving the topological equation for the
front motion in the simplest form given by Eq. (1), and
to transform the term on the right-hand side of Eq.
(35) to a source of mass resulting from vaporization or
condensation. This alternative was also employed by
Welch and Wilson (2000) for the prediction of hori-
zontal film boiling in conjunction with one of the VOF
variants.

8. Concluding remarks

The paper presents some progress achieved by the
authors’ group and the recent trends of other research-

ers in the development of prediction methods for mul-
tiphase flows based on the DNS of interface dynamics
and inter-phase heat and mass transfer. The paper in-
troduces a generalized form of one-fluid formulation
based on the evolution of the composition field v. The
strategy does not require further closure relationships
for the interfacial area and inter-phase momentum in-
teractions, such as in the classical two-fluid method. The
v-based description of the one-fluid formulation was
used as departure point for other existing methods: The
composition field can be manipulated and transformed
into the liquid volume fraction Fij in VOF, into the
smoothed distance to the interface /ij in LS, or into the
vertical elevation fij in the boundary fitting method.
The introduction of capillary forces into the Navier–
Stokes equations was also treated in a general way,
based on the phase indicator function v. Other available
approaches were also discussed, in particular the as-
sumptions under which the most common form of
capillary forces, i.e. the surface tension, can be derived
from the basic theory of the free energy density of fluids.
Integrating inter-phase heat and mass transfer within
the ITM framework has also been examined, and the
various possible implementations were discussed de-
parting from the generalized v-based description.

Some of the challenges to future applications of the
VOF and LS methods have been investigated. Their
strengths and weaknesses were highlighted and possible
orientations were provided via different examples drawn
from current work of the authors. The LS method in
particular has in fact been shown to be of limited ap-
plicability due to its inherent inability to conserve mass.

Fig. 13. (Left) schematic of a typical problem with interfacial transfer (downward steam-air injection into water (Meier et al., 2000)); (right) enlarged

view of the interfacial region with the inter-phase jump in mass and energy.
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Available remedies were suggested and simple but lim-
ited correction schemes were introduced, such as the
global-mass conservation algorithm. The VOF approach
together with the FT scheme are certainly more precise
than LSs, even if their extension to more complex, three-
dimensional topology changes still pose serious chal-
lenges. A related novel approach referred to as the
boundary fitting method was introduced. This super
DNS of multiphase flows was shown to be a potential
experimentation tool for exploring near-interface tur-
bulence structure and related inter-phase heat and mass
transfer mechanisms.
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